mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain.
نویسندگان
چکیده
Capping of mRNA occurs shortly after transcription initiation, preceding other mRNA processing events such as mRNA splicing and polyadenylation. To determine the mechanism of coupling between transcription and capping, we tested for a physical interaction between capping enzyme and the transcription machinery. Capping enzyme is not stably associated with basal transcription factors or the RNA polymerase II (Pol II) holoenzyme. However, capping enzyme can directly and specifically interact with the phosphorylated form of the RNA polymerase carboxy-terminal domain (CTD). This association occurs in the context of the transcription initiation complex and is blocked by the CTD-kinase inhibitor H8. Furthermore, conditional truncation mutants of the Pol II CTD are lethal when combined with a capping enzyme mutant. Our results provide in vitro and in vivo evidence that capping enzyme is recruited to the transcription complex via phosphorylation of the RNA polymerase CTD.
منابع مشابه
Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription.
The activities of several mRNA processing factors are coupled to transcription through binding to RNA polymerase II (Pol II). The largest subunit of Pol II contains a repetitive carboxy-terminal domain (CTD) that becomes highly phosphorylated during transcription. mRNA-capping enzyme binds only to phosphorylated CTD, whereas other processing factors may bind to both phosphorylated and unphospho...
متن کاملKin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II.
The cotranscriptional placement of the 7-methylguanosine cap on pre-mRNA is mediated by recruitment of capping enzyme to the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II. Immunoblotting suggests that the capping enzyme guanylyltransferase (Ceg1) is stabilized in vivo by its interaction with the CTD and that serine 5, the major site of phosphorylation within the CTD heptamer...
متن کاملThe mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II
RNA Polymerase II (RNAPII) uniquely possesses an extended carboxy terminal domain (CTD) on its largest subunit, Rpb1, comprising a repetitive Tyr1Ser2Pro3Thr4 Ser5Pro6Ser7 motif with potential phosphorylation sites. The phosphorylation of the CTD serves as a signal for the binding of various transcription regulators for mRNA biogenesis including the mRNA capping complex. In eukaryotes, the 5 pr...
متن کاملAllosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain.
mRNA capping is a cotranscriptional event mediated by the association of capping enzyme with the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II. In the yeast Saccharomyces cerevisiae, capping enzyme is composed of two subunits, the mRNA 5'-triphosphatase (Cet1) and the mRNA guanylyltransferase (Ceg1). Here we map interactions between Ceg1, Cet1, and the CTD. Although the guan...
متن کاملCoordination between transcription and pre-mRNA processing.
A large body of work has proved that transcription by RNA polymerase II and pre-mRNA processing are coordinated events within the cell nucleus. Capping, splicing and polyadenylation occur while transcription proceeds, suggesting that RNA polymerase II plays a role in the regulation of these events. The presence and degree of phosphorylation of the carboxy-terminal domain of RNA polymerase II la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 11 24 شماره
صفحات -
تاریخ انتشار 1997